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Abstract 

It is known that quantization of massless spin-1 particles runs into several related complications such as 

the redundancy of gauge orbits, the presence of extra degrees of freedom and the need to introduce 

“ghost” fields. The textbook interpretation of quantum gauge theory is that “ghosts” are unphysical objects 

whose function is to preserve Lorentz covariance and unitarity.  In particular, Faddev-Popov “ghosts” 

(FPG) violate the spin-statistics theorem and are devoid of measurable properties. FPG are shown to 

decouple from the spectrum of observable states, yet it remains unclear how their presence in loop 

diagrams and their interaction with gauge fields is even possible in the absence of any physical attributes. 

The first part of this report is a brief pedagogical review of gauge field quantization. The second part 

builds up on the idea that, at least in principle, the concept of spacetime endowed with minimal fractality 

enables a “ghost”-free formulation of quantum gauge theory. An added benefit of this insight is that it sets 

the stage for a non-perturbative understanding of vacuum polarization in Quantum Electrodynamics. 

Key words: Path Integral Quantization, Gauge Theory, Ghost Fields, Faddeev-Popov Method, Gauge 

Fixing, Minimal Fractal Manifold. 
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 We begin with a brief survey of the main difficulties confronting quantization of abelian 

and non-abelian fields. The interested reader may consult [  ] for a more comprehensive 

analysis and additional technical details. 

1) Quantization of the Electromagnetic Field    

1.a) The classical electromagnetic Lagrangian in the absence of external sources is given 

by 

 0

1

4
L F F 

    (1) 

where the field strength is defined as 

 F A A          (2) 

Maxwell equations read 

 0 [ ( ) ] 0F A  

              (3) 

The Lagrangian (1) is invariant under the group of local gauge transformations   

 ( ) ( ) ( )A x A x x      (4) 

for any function ( )x  satisfying the commutation condition 

 ( ) ( ) [ , ] ( ) 0x x                 (6) 

As a result, the field strength (2) stays unchanged under (4), namely, 
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 ( ) ( )F A A F                  (7) 

A fundamental difficulty in quantizing the Maxwell theory is that the second-differential 

operator 

 D ( )

          (8) 

has no inverse as it annihilates any function of the form ( )x  . This implies that, for 

any given initial data, one cannot uniquely find the potential ( )A x at later times since 

there is no way of distinguishing between ( )A x  and ( ) ( )A x x    . This defines the 

redundancy problem of gauge theory: the phase space of Maxwell’s theory is “foliated” 

by gauge orbits that are inherently over-counted.  

1.b) A related difficulty of vector field quantization lies in the number of real 

components carried by massless spin 1 operators. The electromagnetic potential ( )A x  

has four independent components, yet the photon has only two independent degrees of 

freedom called polarization states. Let us elaborate on this point with additional details. 

To examine the plane-wave solutions of Maxwell equations (3), it is customary to 

consider the momentum space representation of ( )A x  

 4

4

1
( ) ( )exp( )

(2 )
A k d xA x ik x 


    (9) 

Under the gauge transformation, the potential (9) changes as 

 ( ) ( ) ( )A k A k k k     (10) 
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Field equations take the form 

 2 ( ) ( ) 0k A k k k A k

     (11) 

and are invariant under (10). One can conveniently resolve ( )A x  into four independent 

vectors, ( , ) k , 0( , )k k  k  and 0( , )k k


 k , defined by 

 ( , ) 0k

  k  , 0 ( , ) 0  k      ( 1,2)    (12) 

Hence,  

 ( ) ( ) ( , ) ( ) ( )A k a k b k k c k k
     k   (13) 

and the field equations (11) turn into 

 2 2( ) ( , ) ( )[ ( ) ] 0kk a k b k k k k k

       ,  ( )k k > 0  (14) 

which forces the coefficient functions to vanish, namely, 

 2 ( ) 0,k a k    ( 1,2)   (13a) 

 ( ) 0b k   (13b) 

Relations (13) show that the field equations cannot fix the value of the coefficient ( )c k . 

This implies that ( )c k  can be set to zero by means of a suitable gauge transformation, 

which, in turn, means that ( )c k  has no physical meaning. One arrives at the conclusion 

that there are only two independent plane wave solutions on the light cone ( 2 0k  ) and 

two transverse polarization vectors.   
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The standard solution to the gauge redundancy problem of Maxwell theory is gauge 

fixing. The method reduces the number of allowed orbits to a smaller set, where all the 

orbits are related by smaller gauge group symmetry. Since quantum gauge theory is 

often described using the path-integral (PI) formulation, a generalization of gauge fixing 

to non-abelian fields is required to ensure internal consistency of the theory. This is the 

motivation for the Faddeev-Popov (FP) method described in the next paragraph. 

1.c) Unlike the case of massive fields, the spin of a massless particle cannot be defined 

relative to its rest frame of reference. As a result, the three-dimensional rotation group 

is no longer adequate for characterizing the photon spin and it is replaced by the group 

of two-dimensional rotations around the three-momentum vector k  [ ]. The reality of 

only two transverse photon polarizations hints to a violation of Lorentz invariance 

stemming from the fact that transversality is not preserved by Lorentz transformations. 

It can be shown, however, that Lorentz symmetry is restored provided that photons 

couple to conserved currents defined through 0J 

  . The existence of such currents 

is a direct consequence of gauge invariance.   

2) The Faddeev-Popov method  

The FP method consists in applying a suitable constraint in the PI description of gauge 

theory that automatically removes the ambiguity associated with the gauge 

transformation.  Consider the generating functional  

 4[ ] exp ( )Z J DA i d x L J A      (14) 
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The integral measure ( )xDA dA x    spans over all possible vector potentials A  and 

necessarily includes their gauge transforms (4). Explicitly writing (4) as 

 ( )A A x       (15) 

factors out the contribution of A  and ( )x  in (14), namely, 

 4[ ] exp ( )Z J DA i d x L J A D

        (16) 

The presence of the second integral over the arbitrary field ( )x  causes the generating 

functional to diverge since there are unaccountable many ( )x  contributing to (16). 

Following the FP method [  ], the generating functional (16) is cast in the equivalent 

form 

 [ ] [ , ; ] [ ] ( [ ])Z J D F A J A G A        (17) 

where 

 4[ , ; ] exp ( )F A J dA i d x L J A       (18) 

and 

 [ ]G A A 

    (19) 

The FP determinant is defined as 

 
[ ]

[ ] det( )
G A

A






 


,    0   (20) 
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and leads to the introduction of “ghost” and “anti-ghost” fields. In particular, the “ghost” 

part of the Lagrangian in Yang-Mills theory is given by [  ] 

 ( )a a abc a c

g bL c c g f c A c  

      (21) 

Here, " "a  is the index of the gauge group," "g  stands for the coupling charge and " "abcf

for the structure constants. The first term is the kinetic component of the Lagrangian 

containing the contribution of “ghosts”( ac ) and their antiparticles ( ac ), whereas the 

second term reflects the interaction of ghosts with the gauge field. In Yang-Mills theory, 

“ghosts” violate the spin-statistics theorem in that they are spinless complex scalar fields 

with fermion statistics [  ]. 


